How to Develop a Program Logic Model
Learning objectives

• By the end of this presentation, you will be able to:
 • Describe what a logic model is, and how it can be useful to your daily program operations
 • Identify the key components of a logic model
 • Develop a logic model for your program
 • Use a logic model for evaluation planning
Overview of presentation

• A program’s theory of change and logic model
• Uses of logic models
• Components of a logic model
• How to read a logic model
• How to develop a logic model
• How to apply logic models to evaluation
What is a program’s theory of change?

• The general underlying idea of how you believe your intervention will create change.

• There are three main elements:

For an overview of theory of change and evidence, CNCS grantees can refer to the modules, “Designing Effective Action for Change” and “Evidence: What It Is and Where to Find It”, respectively, located on the Knowledge Network.
Example of a program’s theory of change

Theory of change for a nutrition assistance program:

- Problem/Need: Families suffer from poor nutrition-related health problems
- Intervention: Nutrition education and referral services
- Intended Outcome: Healthier families
What is a logic model?

• A detailed visual representation of a program and its theory of change.

• Communicates how a program works by depicting the intended relationships among program components:
 – Inputs or resources
 – Activities
 – Outputs
 – Outcomes

![Diagram of logic model]

[Diagram showing the flow from Inputs to Activities to Outputs to Short to Medium to Long, ending with Outcomes]
Why develop a logic model?

- Generate a clear and shared understanding of how a program works
- Support program planning and improvement
- Serve as foundation for evaluation
Key components of a logic model

• Inputs or resources
• Activities
• Outputs
• Outcomes (short-, medium- and long-term)
Key components of a logic model

- **Inputs or resources** include the human, financial, organizational, and community resources available for carrying out a program’s activities.

- Examples:
 - Funding
 - Program staff
 - AmeriCorps members
 - Volunteers
 - Research
Key components of a logic model

• **Activities** are the processes, tools, events, and actions that are used to bring about a program’s intended changes or results.

• Examples:
 – Workshops on healthy food options
 – Food preparation counseling
 – Referrals to food programs and resources
Key components of a logic model

- **Outputs** are the direct products of a program’s activities and may include types, levels and targets of services to be delivered by the program.

 - Examples:
 - # individuals attending workshops
 - # individuals receiving services
 - # individuals receiving referrals

Key components of a logic model

- **Outcomes** are the expected changes in the population served that result from a program’s activities and fall along a continuum, ranging from short to long term results:
 - Short-term: changes in knowledge, skills, and/or attitudes (e.g., ↑knowledge healthy choices)
 - Medium-term: changes in behavior or action (e.g., ↑ adoption of healthy food practices)
 - Long-term: changes in condition or status in life (e.g., ↑ food security)
Difference between outputs and outcomes

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Direct products of a program’s activities/services</td>
<td>• Changes resulting from a program’s activities/services</td>
</tr>
<tr>
<td>• Often expressed numerically or quantified in some way</td>
<td>• Quantify changes in knowledge, attitude, behavior, or condition</td>
</tr>
<tr>
<td>• Examples:</td>
<td>• Examples:</td>
</tr>
<tr>
<td># attending workshops</td>
<td>↑ knowledge healthy choices</td>
</tr>
<tr>
<td># receiving services</td>
<td>↑ adoption healthy practices</td>
</tr>
<tr>
<td># receiving referrals</td>
<td>↑ food security</td>
</tr>
</tbody>
</table>
How to read a logic model

- Read from left to right
- Two “sides” to a logic model - a process side and an outcomes side
How to create a logic model

- Two main approaches are used to create a logic model:
 - Reverse logic (right to left) – asks “but how” questions
 - Forward logic (left to right) – uses “if…then” statements
How to create a logic model using forward logic

Forward logic uses “if-then” statements.

How to create a logic model using reverse logic

• What is the desired long-term outcome?
 – Increase # of healthy families. But how?

• What is the desired intermediate outcome?
 – Increase # of families using healthy food practices. But how?

• What is the desired short-term outcome?
 – Individuals gain knowledge of healthy food choices. But how?

• What outputs are needed to achieve the outcomes?
 – 200 families complete an educational workshop. But how?

• What activities are needed to achieve the outcomes?
 – Conduct four educational workshops per month. But how?

• What inputs are needed to achieve the outcomes?
 – Funding, program staff, AmeriCorps members, volunteers, research.
Group exercise: Develop a logic model for a wildlife conservation program

Exercise #1

A wildlife conservation program is designed to create healthy, productive, and sustainable ecosystems for the benefit of wildlife in areas of need.

What might this program’s logic model look like?
Example logic model for wildlife conservation program

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>ACTIVITIES</th>
<th>OUTPUTS</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>What we invest</td>
<td>What we do</td>
<td>Direct products from program activities</td>
<td>Changes in knowledge, skills, attitudes, opinions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Changes in behavior or action that result from participants' new knowledge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Meaningful changes, often in their condition or status in life</td>
</tr>
</tbody>
</table>

Short-Term

Medium-Term

Long-Term
Example logic model for wildlife conservation program

<table>
<thead>
<tr>
<th>INPUTS</th>
<th>ACTIVITIES</th>
<th>OUTPUTS</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>What we do</td>
<td>Direct products from program activities</td>
<td>Changes in knowledge, skills, attitudes, opinions</td>
</tr>
<tr>
<td></td>
<td>What we do</td>
<td>Changes in behavior or action that result from participants’ new knowledge</td>
<td>Meaningful changes, often in their condition or status in life</td>
</tr>
<tr>
<td></td>
<td>What we do</td>
<td>Increase in trail use and enjoyment of public lands by people with physical disabilities</td>
<td>Enhancement and conservation of healthy, productive, sustainable ecosystems for the benefit of wildlife</td>
</tr>
<tr>
<td></td>
<td>What we do</td>
<td>Increase in native wildlife population sizes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What we do</td>
<td>Increase in biodiversity</td>
<td></td>
</tr>
<tr>
<td>Funding</td>
<td>Make trails accessible for people with physical disabilities</td>
<td>Installed ramps and hand rails on X miles of trail.</td>
<td></td>
</tr>
<tr>
<td>Staff</td>
<td>Conduct habitat development projects</td>
<td>Planted native trees and other native species on X sites.</td>
<td></td>
</tr>
<tr>
<td>AmeriCorps members</td>
<td>Conduct invasive species removal</td>
<td>Removed invasive plant species on X sites.</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Member Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 non-AmeriCorps volunteers</td>
<td>Research</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Short-Term
- Increase in trail access by individuals with physical disabilities
- Increase in food and clean water supply for native wildlife
- Increase in available shelter for native wildlife

Medium-Term
- Increase in trail use and enjoyment of public lands by people with physical disabilities
- Increase in native wildlife population sizes
- Increase in biodiversity

Long-Term
- Enhancement and conservation of healthy, productive, sustainable ecosystems for the benefit of wildlife
Developing a logic model

Exercise #2

- In each column of the logic model template, identify the following key components for your program:
 - Inputs
 - Activities
 - Outputs
 - Outcomes (short-, medium- and long-term)
Questions to consider as you create a logic model

<table>
<thead>
<tr>
<th>Component</th>
<th>Questions to consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs/Resources</td>
<td>What resources do you need to implement your program?</td>
</tr>
<tr>
<td>Activities</td>
<td>What activities will be or are being carried out to achieve your program’s desired outcomes?</td>
</tr>
<tr>
<td>Outputs</td>
<td>What are the direct products of your program’s activities?</td>
</tr>
<tr>
<td>Short-term</td>
<td>What changes in knowledge, skills, and/or attitudes do you expect from your program?</td>
</tr>
<tr>
<td>Medium-term</td>
<td>What changes in behavior or actions do you expect from your program?</td>
</tr>
<tr>
<td>Long-term</td>
<td>What changes in status or condition do you expect from your program?</td>
</tr>
</tbody>
</table>
Verify your logic model

• Consider asking the following questions:
 – **Level of detail**: Does your model contain an appropriate amount of detail for its intended use? Does it include all key program components?
 – **Plausible**: Does the logic of the model seem correct? Are there any gaps in the logic of the program?
 – **Realistic**: Is it reasonable to assume that the program can achieve the expected outcomes?
 – **Consensus**: Do program staff and external stakeholders agree that the model accurately depicts the program and its intended results?
<table>
<thead>
<tr>
<th>Performance Measurement</th>
<th>Program Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ongoing monitoring and reporting of program accomplishments and progress</td>
<td>• In-depth research activity conducted periodically or on an ad-hoc basis</td>
</tr>
<tr>
<td>• Explains what level of performance is achieved by the program</td>
<td>• Answers questions or tests hypotheses about program processes and/or outcomes</td>
</tr>
<tr>
<td></td>
<td>• Used to assess whether or not a program works as expected and why (e.g., did the program cause the observed changes?)</td>
</tr>
</tbody>
</table>
Logic models as a performance measurement tool

• A logic model can serve as a framework for planning performance measurement activities. It can help to:
 – Identify components of your program to include in performance measurement
 – Identify indicators and the measures of progress/performance that align with program components
Logic models as an evaluation tool

A logic model can serve as a framework for your evaluation plan. It can help you focus your evaluation by identifying:

- Questions want/need answered
- Aspects of program to evaluate
- Type of evaluation design
- Information to collect
- Measures and data collection methods
- Evaluation timeframe
Determining what to evaluate

Process
- Inputs
- Activities
- Outputs

Evaluation Questions
- Are resources adequate to implement program?
- Are activities delivered as intended?
- How many, how much was produced?
- Change in knowledge, attitudes, skills?
- Change in behavior, procedures, practice policies?
- Change in social, economic, health, environmental condition?

Outcome
- Short-term Outcomes
- Medium-term Outcomes
- Long-term Outcomes

Indicators

What will be measured?/What data are available for evaluation?
Things to remember

- Developing a logic model is not completed in one session or alone.
- There is no one best logic model.
- Logic models represent intention.
- A program logic model can change and be refined as the program changes and develops.
- Programs do not need to evaluate every aspect of a logic model.
- Logic models play a critical role in informing evaluation and building the evidence base for a program.
Questions?